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The development of catalytic metal carbene transformations
for the construction of macrocyclic lactones has dramatically
increased their synthetic advantages. This is the first review of
this developing methodology.
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Background

The synthesis of macrocycles is rich in methodology
and important for the construction of numerous biologi-
cally significant compounds.'# Although macrocyclic
systems can be generated by cleavage of internal bonds
in polycyclic systems and by ring expansion,® the meth-
ods of choice involve entropically disfavored end-to-end
cyclization of open, long-chain precursors, generally
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Mechanism

Those catalysts with reactivities similar to Rhy(5S-
MEPY), (virtually all of the carboxamidates) promoted
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with the required use of high dilution techniques.® Rates
for macrocyclization are intermediate between highly fa-
vored five- or six-membered ring formation and the inter-
molecular transformation, and a variety of ingenious pro-
cesses have been devised to circumvent competition from
intermolecular reactions in large ring syntheses.

We have established the generality of a catalytic
metal carbene approach to macrocyelic lactones. Our re-
alization of the importance of this methodology began
with the report that whereas trans, trans-famesyl dia-
zoacetate underwent intramolecular cyclopropanation ex-
clusively at the allylic double bond with catalysis by
thodium(II) carboxamidates, especially Rh, (MEPY ),
(>95% ee), addition took place solely at the terminal
double bond with the use of thodium(II) carboxylates to
produce a 13-membered cyclopropane-fused lactone
(Scheme 1) .7

Rh(0Ac),
CH2Cl,

63% yield
trans/cis: 84/16

intramolecular cyclopropanation, whereas those with re-
activities of Rhy(OAc),, including rhodium(1II) trifluo-
roacetamidate,
These results were consistent with a mechanism for cy-

catalyzed exclusive macrocyclization.
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clopropanation that we initially advanced in 1984 and
which accounts for the preference of macrocyclization
over allylic cyclopropanation.® Accordingly, the interme-
diate metal carbene forms an initial 7-complex with the
reacting carbon-carbon double bond; rotation of the dou-
ble bond on the electrophilic carbene center directs the
reacting system to the transition state from which bond
formation occurs (Scheme 2) .
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Such a process can occur with minimum strain in
intermolecular addition reactions and when the ring size
is sufficiently large to model the intermolecular process.
Allylic cyclopropanation, by contrast, presents too con-
strained a reacting system to undergo initial 7-complex
formation . In other words, intermolecularand intramolec-
ular macrocyclization addition reactions occur via 7-com-
plex formation, whereas allylic intramolecular cyclo-
propanation proceeds via direct ¢-bond formation without
the intervention of a m-complex. Consistent with this in-
terpretation, macrocycle formation is a function of the
catalyst with the more electrophilic catalysts favoring
macrocyclization over intramolecular allylic cyclopropa-
nation while the less electrophilic catalysts favor allylic
cyclopropanation (Scheme 3).°
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Increasing electrophilicity
Scope and limitations—cyclopropanation

The catalytic intramolecular cyclopropanation by di-
azoacetates onto a remote carbon-carbon double bond re-
sulting in the formation of 9- to 20-membered ring lac-
tones has been reported.'® Terpene systems, cis-
nerolidyl diazoacetate (1 in Scheme 4) and related
structures, malonic ester derivatives, and those with 1,
2-benzenedimethanol (2 in Scheme 5), pentaerythritol,
and cis-2-buten-1, 4-diol in Scheme 6 (4) linkers all
undergo cyclopropanation onto the most remote carbon-
carbon double bond in good yield. Generally, only one
cyclopropane diastereoisomer is observed, but increasing
ring size allows stereochemistries in macrocyclization re-
actions that resemble those of their intermolecular cyclo-
propanation counterparts.’ Overall, few limits to macro-
cycle formation are evident, and the methodology ap-
pears to have general applicability. ' The absence of ear-
lier reports of intramolecular macrocyclization’” 2 become
understandable when analysis of catalyst reactivity is
made.

Enantiocontrol in these reactions has been examined
in detail.”® With the methallyl diazoacetate linked
through a 1, 2-benzenedimethanol, CuPF¢/bis-oxazoline
LH caused macrocyclization to occur in high yield and
with 90% ee (3, n=1). With the ( Z)-2-buten-1,4-
diyl diazoacetate derivative 4, for which both near and
remote cyclopropanation are possible, CuPFs/LH prefer-
entially catalyzed formation of the macrocyclic product,
whereas Rh, (55-MEPY ), produced the allylic cyclo-
propanation product exclusively (Scheme 6). The satu-
rated analog of 4 also underwent macrocyclization with
CuPFs/LH (91% ee). The influence of catalyst on re-
giocontrol in these reactions is consistent with the elec-
trophilicity of the catalyst, CuPFs/LH being more reac-
tive than Rh,(5S-MEPY),.
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Ylide Formation and Rearrangement

Extension of this methodology to the formation of

larger rings has provided relatively constant enantiocon-
trol with methallyl systems using CuPFs/LH (Scheme
5). The formation of 15-membered ring product occurs

in preference to addition to the cis-disubstituted double
bond of 5a that would result in the formation of a 10-
membered ring. * Interestingly, ylide formation occurs in
competition with cyclopropanation, and with methyl
(5b) or benzyl ethers, moderate enantiocontrol is
achieved in the [ 2, 3 ]-sigmatropic rearrangement
(Scheme 7) .41
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Even with 5a, however, the only ylide-derived [2,
3 ]-sigmatropic rearrangement product results from inter-
action with the internal, rather than the external double
bond. * The exclusive formation of the erythro (cis) iso-
mer demonstrates the exceptional stereocontrol that can
be achieved in these transformations.

Similar catalyst dependence on chemoselectivity can
be seen in the diazo decomposition of triethylene glycol-
linked allyl diazoacetate 6.'° Rhy ( OAc), catalysis
caused formation of macrocyclic cyclopropane 7 (7:8 =
97:3) exclusively while the use of rhodium(II) carbox-
amidates such as Rh,(4R-MEOX), preferred the C—H
insertion product 8 (7:8 = 7:93) (Scheme 8). The
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Scope and Limitations-cyclopropenation

Addition to propargyl ethers gives results that com-
plement the selectivities achieved with intramolecular cy-
clopropanation reactions.!”"® Here chiral rhodium (II)
carboxamidates, especially Rh, (4S-IBAZ),, are even
more selective than CuPFg¢/LH. Several examples are
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cis/trans ratio of cyclopropane 7 (7Z/7E) was rela-
tively independent on the catalyst used. Both Cu(I) and
Rh(II) catalysts favored the cis product 7Z over 7E
with no more than a 2:1 ratio. In the case of using Cu
(I) catalyst, oxonium ylide/ [2,3 ]—sigmatmpic rear-
rangement occurred to give macrocyclic ester 9 as a mi-
nor process (7:9=86:14). Good enantioselectivities of
macrocyclic cyclopropane 7Z (88% ee) and 7E (80%
ee) were obtained by employing Cu(I) (LH) PF4 cata-
lyst. The use of rhodium (II) carboxamidate catalysts
such as Rh, (4R-MEOX), gave moderate ee s of 7
(range from 33% to 59% ).

9

provided that confirm the viability of these reactions
(Scheme 9 and 10) . Particularly noteworthy is the out-
come from reaction of the propargyl system linked to the
diazoacetate through a cis-2-buten-1,4-diyl linker. Al-
Wylic cyclopropanation occurs to the virtual exclusion of
macrocyclic cyclopropenation with Rh, (5S-MEPY ),,
whereas this latter transformation is dominant with
Rhy(4S-IBAZ),.
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In the diazo decomposition of 10, Rh,(4S-
IBAZ), gave 76% ee value of macrocyclic cyclopropene
product 11 as a major product ( Scheme 10). Interest-
ingly, while exclusive cyclopropanation occurs with
Rhy(0Ac)4, ylide formation is a major process in the
Cu(CH;CN)PFg-catalyzed diazo decomposition of 10 to

Scheme 10
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give allene product 13 in 46% isolated yield. This pro-
cess is found to be sensitive to steric effects, however,
since none of ylide product 13 was observed by employ-
ing Cu (LH) PFg catalyst which produced the cyclo-
propene 11 as the major product in 61% ee. Pd-C cat-
alyzed hydrogenation of 11 give only cis cyclopropane
7Z quantitatively without losing enantioselectivity .
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Aromatic cycloaddition

The addition of a metal carbene to an aromatic ring
is also a viable transformation for macrocycle forma-
tion. 1> Exclusive addition to the 3 »4-position of the 4-
methoxybenzyl derivative of 14 occurs in reactions cat-
alyzed by Rhy(OAc),, but the more reactive Rh,(pfb),
also produces the product from addition to the 1,2-posi-
tion as a minor constituent of the reaction mixture (13;
87). With 15, which upon diazo decomposition can un-
dergo either addition to the carbon-carbon triple bond or
addition to the aromatic ring, aromatic cycloaddition oc-
curs exclusively when Rhy(MEOX), is employed (66%
yield, 73% ee), although other dirhodium (II) cata-
lysts, including Rh, (OAc),, favor macrocycle forma-
tion,

Scheme 11
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The extent to which this macrocyclization process
can be used for the preparation of large-ring esters can
be seen in results from diazo decomposition of the dia-
zoacetate 16 derived from triethylene glycol ( Scheme
11).%" Catalysis by Rh, (5S-MEPY ), gave only the
product from C-H insertion (17) in high yield even
though the use of the model carboxamidate Rh,(cap),,
resulted in a mixture of products in which both 17 (ma-
jor) and 19 (minor) were evident. In contrast, use of

Cu(MeCN)4PFs gave mainly 18 and dithodium(II) oc-
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tanoate, Rhy(OAc), and Rh,(OAc), gave mainly ring-
opened products 19. The product from anti addition,
E-19, was favored over the product from syn addition,
Z-19, in this case. Furthermore, 18 was converted to
20 by treatment with 1 mol % I, in chloroform, and 19
was isomerized to 21 quantitatively. Other transforma-
tions are being examined in what appears to be a general
outcome in metal carbene reactions. The surprising fea-
ture of these macrocyclization reactions, in addition to
their design, is the absence of a requirement for high di-
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16 CH,Cl, E
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2 LI o O~ ~0

CH,Cl,

v U

O

(Z:E=18:32) O

lution. These reactions are performed successfully under
the same conditions as have been used for allylic cyclo-

propanation reactions.

Coupling

Intramolecular coupling of bisdiazo compounds is
another effective method for macrocycle formation.?
Thus bisdiazoacetate 22 underwent coupling catalyzed by
Cu(I) or Rh(II) to give the 23-membered ring crown
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ether 23 in good yield (Scheme 12). The cis/trans se-
lectivity was dependent on the catalyst used. CuPF, gave
trans product 23Z exclusively while Rhy (5R-MEPY ),

preferred to form cis isomer. No high dilution technique
was required and none of intermolecular coupling product
was observed in this process.

Scheme 12
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